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Polarization measurements

The term of “chrono” is descended from “chronos”, which means “time” in Greek.

Chronoamperometry Chronopotentiometry
o f >
< i
E Electrode potential: constant = Current density: constant
£ ©
C o
S 2
3 o
time, t / sec. time, t / sec.
Ex.) Corrosion reaction Ex.) Charge/discharge reaction

Metal finishing

Understanding the correlation between electrode potential and current density
is significant to analyze the results obtained from polarization measurement.
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Model of electrode reaction process

Vicinity of the electrode surface Bulk
adsw, OX - . OX
Ox -~ desorption diffusion, electrophoresis, convection
t
e : electron
ne.<-- | transfer
|
1

Red adsorption
NG P diffusion, electrophoresis, convection

~
~

desorption > Red - - -J---------- Red

Electrolyte solution

Current

Ox + ne~ — Red (Electrochemical reaction under a constant current, I (A), for t (s))

Product mass of Red (mol): Ng.4 (mol) = It/nF = Q/nF

Ox n: stoichiometric coefficient of electrons in electrochemical reaction
F: Faraday constant (96500 C mol-1)
Q: electric charge generated by the reaction

ne: Reaction rate of Red (mol s1): v, = dN/dt = I/nF

Red

Reaction rate of Red (mol s'1): v, = iS/nF

I = iS, i: current density, S: electrode square

Reaction rate can be controlled by changing the current density.
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Current-potential curve

ﬁred q
Ox + ne~ 2 Re
K,y Vied = ACox€XP(—AG)eq/RT) = KiedCox
i i Vox = AcredexP(_AGox/ RT) = koxcred
. '
Ox E A: frequency factor
4 P i Cox: CONcentration of the reactant near the electrode
kRed I kOx o . Creq: CONcentration of the product near the electrode
— | % ! AG,.4: activation energy of the reduction reaction
Ne€«--| p ' AG,,: activation energy of the oxidation reaction
: o g R: molar gas constant
| - i T: absolute temperature
k..q: reaction rate constant of the reduction reaction
Red ! ko: reaction rate constant of the oxidation reaction

Reaction coordinate

Current-potential curve

Kreg o . :
Ox + ne- = Red When the potential difference (AE) exists at the electrode/electrolyte interface,
K
x AGred‘ = AGred + anFAE AGred* = AGred + anFAE
a: transfer coefficient (0 <a<1)
Red
| Vied = ACoxeXp(_AGred/RT) = kredcox
Ox .
Kped|l kox  © Vied = ACox€XP(—AG,oq*/RT)
— S
| 9| M\ = ACo,eXP(—(AG,q + GNFAE)/RT)
I o
R'e q = Ac,,(exp(—AG,.4/RT) x exp(—anFAE)/RT))
= redcoxeXp(_anFAE)/RT)

Reaction coordinate
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Current-potential curve

kred
Ox + ne- 2 Red
k

(004

>
Q

kRed
Ne«_-_-

———————r <

Red

Vied = kredCoxeXp(_anFAE)/RT)
This equation can also be edited to current density by multiplying Faraday constant.

ired = ered iOX = FVOX
= FK.oqCox€Xp(—anFAE)/RT) = FKyyCreq€Xp((1—a)nFAE)/RT)

Under the equilibrium state, ioq = iy

iO = ired = iox (exchange current density)
= FK,eqCox€XP(—anFAE,,)/RT)

= FKoxCreq€XP((1—a)nFAE,,)/RT)

Current-potential curve

kred
Ox + ne- 2 Red
Kox

=
Q

kRed
Ne«- -

———————r

Red

In case the equilibrium state gets out of balance, current flows to the external circuit (iog # foy)-

Also, we call the potential difference under this situation as overpotential () which means
the difference of the electrode potential from the equilibrium potential.

I' = leq = Iox

= FKyedCox€XP(—anF(AE +n)/RT)

— FRouCrea®XP((1—a)NF(AE 4 +1)/RT)

ior[exp(—anFn/RT) — exp((1-a)nFn/RT)]

Butler-Volmer equation
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Current-potential curve

) based on Butler-Volmer equation
red
Ox + ne~ 2 Red Current density
Kox Reduction
i=iglexp(—anFy/RT) — exp((1—a)nfn/RT)]
Irea= L€Xp(—onfn/RT)
Ox A
KRed ? Kox 10 Overpotential
ne'.__: : Positive ° - 1:0 ______________ Negative
I ,
R;:d " dg= —igexp((1—a)nFn/RT)
Oxidation

Current-potential curve

In case of |n]| <5 mV
i = ilexp(-anFn/RT) - exp((1-a)nFn/RT)]
Taylor expansion

x% x3

x— — — — cee —
e—1+1!+2!+3!+ , o< x < oo

Current density
Reduction

i=ig[exp(—anFn/RT) — exp((1-a)nFy/RT)]

ed= fncxp(‘aanp/RT)
--"’())‘verpotential i = i0[1 + (_anFn/RT) _(1+(1_a)nFn/RT)]
Positive oS Negative
= io(NFN/RT)
n = —(RT/iynF)i
Oxidation _n/i o RT/iOI‘IF

= R, (R4: charge transfer resistance)

e*X=1+x

i iox= —toexp((1—a)nFn/RT)
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Current-potential curve

In case of |[n|>70 mV
i = ip[exp(—anFn/RT) — exp((1—-a)nFn/RT)]

Current density
Reduction

(i) n < =70 mV (the term i, is negligible.)

i= iglexp(—anFn/RT) — exp((1-a)nFy/RT) i= ioexp(_anFn/RT)

irea= loeXp(onFy/RT) n = (RTIniy)/anF — (RTIni)/anF

~ Overpotential = 2.303RTlogi,/anF — 2.303RTlogi/anF

Positive | Negative

y (if) n > +70 mV (the term i..q4 is negligible.)
" iy= —igexp((1-a)nFy/RT)

i = —igexp((1-a)nFn/RT) = lislexp((1-a)nFn/RT)

n = —(RTMniy)/(1—a)nF + (RTIni)/(1—a)nF

Oxidation

—2.303RTogi,/(1—a)nF — 2.303RTlogi/(1—-a)nF

Tafel plot

(i) n < =70 mV (the term i, is negligible.)

kred —_ 7 H
Ox + ne- (;_) Red togi n = 2.303RTlogiy,/anF — 2.303RTlogi/anF
o (ii) n > =70 mV (the term i,, is negligible.)
n = —2.303RTlogi,/(1-a)nF — 2.303RTlogi/(1-a)nF
Ox . .
Krea|! Koy Slope: ~anF/2.303RT | Slope: (1-cnF/2.303RT Tafel equation (n=a * blogi)
ne.__|!
| logli|
:
Red
-0.,2 -(;,1 0 O.Il 0.I2
n/'v
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Model of electrode reaction process

Vicinity of the electrode surface

adsorption

4
-
-

-
~ -~ desorption

@)

electron
transfer

—_—

ey —

=I=T=I=I=I=T= 5z

Red « _ adsorption

~
~

\dzfusion, electrophoresis, convection

diffusion, electrophoresis, convection

desorption ™ Red =71

Electrolyte solution

Model of electrode reaction process

Vicinity of the electrode surface Bulk
. 7\
adsorption g Ox SooqlaysE=es D= e Ox by shortening measurement time
=~ desorption e <
Ox -~ P diffusion,
1 S
1 | by adding a supporting electrolyte which leads
ne._’ 1 electron to a dramatic increase in the conductivity of the
< el : transfer electrolyte solution
1
1

Red « _ adsorption

~
~
~

desorption ™ Red 2=~ ~1

~“~ = Red

\diffusion,

Electrolyte solution
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Mass transfer

Ox + ne- — Red

Concentration, ¢
Vicinity of the

electrode surface Bulk

Chulk A

Ox «—1— Ox Slope: (cpux—Co)/0 y
ne

Red —r— Red
Cp

Fick’s first law
J = =D(dcp/dx)

C, : concentration of the reactant
atx=0

D : diffusion constant

J : diffusion flux

J = =D(Cyyk—Co)/0

Diffusion flux is mole number that passes through
a unit area of cross-section in a unit time

i= _nFD(Cbu|k_C0)/6

When the concentration of the reactant near the
electrode becomes 0 (C, = 0)

[ R il

Nernst diffusion layer

Distance,x | = —NFD(Cyyy)/0

Diffusion-limiting current density
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Equilibrium and Steady State

Equilibrium

Consider a half-cell reaction

ex.) M** + 2e- = M
The equilibrium potential is expressed by the Nernst equation.

o RT. 1
Enprm = Enprm — Eln s
M2+

Two half-cell reactions are coupled.
ex.) M>* + 2e- «— M
2H" + 20 — H,
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Equilibrium and Steady State

Equilibrium potentials of the two reactions

o RT. 1
Enpepm = Eppev — —Fln o
M?2+
o RT. 1
Eyen, = Eyam, — ElnaT
H+

The corrosion of M occurs when the emf of the coupled
reaction is positive (AG is negative).

Potential-pH diagrams are helpful to judge thermodynamically
whether a corrosion reaction of interest occurs or not.

Potential-pH diagram (Pourbaix diagram)

0.2F
0.0 ~.f‘/*,‘e
w ‘\\ 6’§
T -0.2E NG A
& Corrosion; Mol
; o4t t
> M2 =1TM ]
> -0.6 E \\.
Z M =106
o -08f
1.0
1.2 . .

[1 | l | | l l
0 2 4 6 8 1012 14 16
pH

Potential-pH diagram gives information
whether the corrosion thermodynamically occurs or not.

To understand the corrosion quantitatively,
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Electrochemical measurements

Measurement for corrosion potential

Potentiometer
(high-impedance)

(V)
’J_‘ black 2 red

KCl salt bridge

L |
{- 0
Wire (Pt) — | =1 | = = l
AgCl+Ag~—.\_\|
333mol L' | | N
KClI solution —
Liquid junction L / \ L
)
AN J g Y,

When the contamination of CI- is not allowed, a double-junction type
reference electrode or a reference electrode without Cl- should be used.

(ex. Hg|Hg,SO, in an acidic solution and Hg|HgO in an alkaline solution)

Electrochemical measurements

Measurement for stationary polarization

Potentiometer
(hlgh—lﬁzdance) [DC power |
. supply
black Q// red
— KCl salt bridge
/a
|
Wire (Pt) — | =1 | =
AgCl + Ag \\*I
333mol L™ | |
KCl solution | —| Working C:ounteI:r
. . /\E‘/ electrode electrode
Liquid junction L1
. J
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Stationary polarization curves

log|i|
A

: N 2
Leorr [} ’ &

1 1 > E

EM2+/N[ Ecorr EH+/H2

The current density for the oxidation of M is equal to that for the
reduction of H* to H, at the potential denoted as E_..

E.... 1s the corrosion potential, while i . is the corrosion current density.

Effect of iR, ,-drop in solution on corrosion rate

sol

The IR, -drop in the test solution must be considered to discuss
corrosion behavior quantitatively.

log|i]
A

overpotential averp otent-ial
for oxidation Jfor reduction
....... AR

iRsol‘drop

» F
Eneom Eum,

The overpotential for the oxidation of M decreases when the
conductivity of the test solution is not high.
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Effect of mass-transfer on corrosion rate

In corrosion reactions, the reduction reaction can be
the oxygen reduction to water.

M2t + 26~ = M
O, + 2H,0 + 4e- = 40H-

A

Diffusion layer

Convection layer The concentration of dissolved oxygen is low.

Concentration, ¢

CO2

The oxygen reduction takes place under
diffusion-limited condition.

bulk (expressed by the Cottrel equation)

4FD02602,bulk

Distance, x

> ‘ lo, diff| = s

Effect of mass-transfer on corrosion rate

1 corr

log|i|

AN

EMZ"'/M Econ- E o Z/HZ 0

E_ . is determined as the potential where the oxidation of

COoIT

M and the reduction of oxygen is balanced each other.

Since the current density of oxygen reduction reaches

its maximum, i

1 Tcorr

is equal to that of oxygen reduction.
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Galvanic corrosion

What is galvanic corrosion?

Evpooy < E
M?2+/M M2+/M - . .
/ / Decrease in oxidation rate

(Sacrificial protection)

M
Dissimilar metals are Dissimilar metals are
in electric/contacts in ionic contact

\
\ A5 A o
~-» [ncrease in oxidation rate

Metal electrode Solution

Galvanic corrosion

The oxidation reactions (dissolution) of M and M’

log|i|

A

} > |
EM’2+/M’ EM2+/M EH+/H2

The oxidation of the metals occurs when the applied potential is
more positive than the equilibrium potentials (Butler-Volmer equation).
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Galvanic corrosion

The reduction reactions (H, evolution) on M and M’

log|i|

A
“.._Hz evolution on M’

N
N\
N\
N
N\

H. evolutionon M\ *
\
\

> £
Exere Eveom Exm,

Since the exchange current density for the H, evolution depends on
metal used as an electrode, two different curves are plotted from Ey:m, .

Galvanic corrosion

Corrosion potentials without electric contact

log|i|
A

)

Everwe Evemt Eyem,

EM’/cl:)rr E E M/corr

Without electric contact, the corrosion occurs on each metal
even when M and M’ are immersed in a common solution.
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Galvanic corrosion

Corrosion potentials with both electric and ionic contact

log|i|
A

E M’2+/M’ EM2+/M E H+*/H,

EM’/cl;)rr E gal/corr E M/corr

The corrosion potential Egacor is determined by
both the total current density of oxidation and that of reduction.

Galvanic corrosion

Sacrificial protection

log|i|

The overpotential

for the M’ oxidation

“INCRESES” The overpotential
for the M oxidation
“DECRESES”

L : E
Evenwe Evem | Enm,
\_ PE EM’/corrE Egal/corrjmmE M/corr E

-----------------

The sacrificial protection of M is expected since the overpotential for
the M oxidation decreases when M and M’ in both electric and ionic contacts.
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