電気化学会関西支部 第51回電気化学講習会 電気化学の基礎と新しいアプローチ

- 4. 電気化学インピーダンス測定の基礎と実際
 ~多孔体電極・イオン伝導体・実用測定(LIB・EDLC)~
 (その1)
 - (大阪公立大学) 有吉欽吾
 - (産業技術総合研究所) 城間 純
 - (兵庫県立大学) 嶺重 温
 - (パナソニックエナジー(株)) 武野光弘
 - (産業技術総合研究所)内田悟史

This supplementary material is the presentation file provided at the 51st Electrochemistry Workshop held by Kansai in response to the comprehensive paper in *Electrochemistry*, **90(10)**, 102007 (2022) https://doi.org/10.5796/electrochemistry.22-66071 entitled,

Electrochemical Impedance Spectroscopy Part 1: Fundamentals

Kingo ARIYOSHI,^{a,*} Zyun SIROMA,^b Atsushi MINESHIGE,^c Mitsuhiro TAKENO,^d Tomokazu FUKUTSUKA,^e Takeshi ABE,^f and Satoshi UCHIDA^b

- ^a Graduate School of Engineering, Osaka Metropolitan University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka 558-8585, Japan
- ^b Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology, Midorigaoka 1-8-31, Ikeda, Osaka 563-8577, Japan
- ^c Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
- ^d Panasonic Energy Co., Ltd., Matsushita 1-1, Moriguchi City, Osaka 570-8511, Japan
- ^e Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ^f Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- * Corresponding author: ariyoshi@omu.ac.jp

© The Author(s) 2022. Published by ECSJ. This is an open access material distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium provided the original work is properly cited. [DOI: 10.50892/data.electrochemistry.21100315].

電気化学インピーダンス測定の基礎と実際

~多孔体電極・イオン伝導体・実用測定(LIB・EDLC)~

1. 電気化学インピーダンスの基礎

© Osaka Metropolitan University All Rights Reserved.

大阪公立大学大学院 工学研究科

有吉 欽吾

2022年11月14-18日 第51回電気化学講習会

電気化学イン	ノピーダンス測定とは	Section 1			
電気化学測定における基本情報は・・・ 電流 [A] 時間 [s]					
電気化学測定法	入力信号(制御)	出力信号(応答)			
クロノアンペロ メトリー	電位(電圧) <i>E</i> = 一定	電流の時間変化 I(t)			
クロノポテンショ メトリー	電流 I=一定	電位の時間変化 E(t)			
サイクリック ボルタンメトリー	電位の掃引速度 d <i>E</i> /d <i>t</i> = 一定	ある電位での電流値 I(E)			
電気化学インピー ダンス測定	交流電圧(電流) 周波数 <i>f</i> [Hz]=一定	ある周波数におけるイン ピーダンス Z(ω) [Ω]			
	<i>f</i> [Hz] : 周期の逆数 [s ^{−1}]	$Z(\omega) [\Omega] = E(\omega) / I(\omega) [V/A]$			

測定結果と等価回路からの計算結果が一致 → 電極&セルを構成要素に分割

|Z|と θ により、抵抗とコンデンサの交流特性を同様に表現できる → 交流特性を表現するのに "インピーダンス" という概念を導入

	entreterty
複素数($j = \sqrt{-1}$)を用いて Z を表現すると便利なことが多い	
オイラーの公式: $Z = Z \cos \theta + j Z \sin \theta = Z' + j Z'' = Z \exp \theta$	$p(i\theta)$

		実部	虚部	絶対値	位相差
	Z = Z' + jZ''	$Z' = Z \cos\theta$	$Z^{\prime\prime} = Z \sin\theta$	$ Z = \sqrt{Z^{\prime 2} + Z^{\prime \prime 2}}$	$\theta = \tan^{-1} \left(\frac{Z^{\prime\prime}}{Z^{\prime}} \right)$
RC直列	$R - \frac{j}{\omega C}$	R	$-\frac{1}{\omega C}$	$\sqrt{R^2 + \frac{1}{\omega^2 C^2}}$	$\tan^{-1}\left(-\frac{1}{\omega RC}\right)$
RC並列	$\left(\frac{1}{R} - \frac{\omega C}{j}\right)^{-1}$	$\frac{R}{(\omega RC)^2 + 1}$	$\frac{-\omega R^2 C}{(\omega R C)^2 + 1}$	$\left(\frac{1}{R^2} + \omega^2 C^2\right)^{-1/2}$	$\tan^{-1}(-\omega RC)$

Zの対応関係を幾何学的に表すと…

Zの表現方法①:Bodeプロット Section 2.2

2つのRC並列回路が直列接続している場合、それらの時定数の 比 ($\tau_{\rm NE} / \tau_{\rm PE}$)が100倍程度無いと、円弧の明確な分離は難しい

過電圧が小さい領域では、 過電圧と電流との間に 線形関係が成立

バトラー・ホルマー式に 従うような電極系では、 電圧振幅を10 mV程度 に抑える必要がある

【余談】FRA(Frequency Response Analyzer)では、インピー ダンスの実部および虚部を電気的に演算回路でフーリエ積分するこ とで求めている。

例えば、インピーダンス法(1) 雨宮隆, 宇井幸一, 竹内謙, 電気化学誌, **74**, 351 (2006). 注) 電圧および電流波形を直接測定しているわけではない

 Z_w のTransmission line modelについてはSection 3.3を参照

 Z' / Ω

δ

 $A\sigma_{
m eff}$

1

3

δ

 $A\sigma_{
m eff}$

有限拡散(PB)

界面で物質供給があり、

低周波になるほど 抵抗の挙動を示す

濃度が一定の場合

低周波になるほど
コンデンサの挙動

記号の意味は

式A12を参照

を示す

Electrochemical Impedance Spectra for Porous Electrodes and Transmission-Line Models

Transmission-Line Model (TLM)
 TLMs for Porous Electrode
 TLMs for Warburg Impedance

Transmission-Line Model (TLM)

See Section 3.1.

	per unit length		total in TLM	
	impedance	capacitance (if used)	impedance	capacitance (if used)
element 'A' (or 'C')	z,[Ω/cm]	c _A [F cm]	$Z_{A}[\Omega] = Z_{A}L$	C_{A} [F] = $c_{A} \div L$
	-AL	(z _A = 1/jωc _A)		(Z _A = 1/jωC _A)
	$z_{\rm p}[\Omega \text{ cm}]$	с _в [F/cm]	$Z_{\rm B}[\Omega] = z_{\rm B} \div L$	$C_{\rm B}$ [F] = $c_{\rm B}L$
element 'B'	D	(z _B = 1/jωc _B)		(Z _B = 1/jωC _B)

Four different measurements of a TLM with three elements row

TLMs for Porous Electrode

See Section 3.2.

TLMs for Warburg Impedance

See Section 3.3.

Translation into a TLM See Eqs. 18-25

