The Synthetic Scale-up Data Generated by the Austin model and Their Estimation by the Kotake–Kanda Model

*****Title of Manuscript

On the Similarity of Austin Model and Kotake–Kanda Model and Implications for Tumbling Ball Mill Scale-up

Resource DOI: https://doi.org/10.14356/kona.2023005

*Keywords

ball milling, breakage, population balances, Austin model, Kotake model, scale-up

*Data Description

The Excel spreadsheet contains the synthetic scale-up data generated by the Austin model and their estimation using the Kotake-Kanda (KK) model, which overall yields the information presented in Table 2 of the manuscript. In view of all scale-up (SU) cases in Table 2, the Austin model, via Eqn. (12) of the manuscript, was used to produce the synthetic scale-up data, i.e., the specific breakage rate S_i^* , to which the S_i^* generated by the KK model, via Eqn. (13) of the manuscript, were compared (SU1–SU4 in Table 2). In SU1–SU4, standard values of the scale-up correction exponents, i.e., $N_1 = 0.5$ and $N_2 = 0.2$, were used. In SU5–SU8, N_1 and N_2 were estimated by fitting Eqn. (13) to the synthetic scale-up data for each diameter ratio $D/D_{\rm T}$ separately. In SU9–SU12, they were fitted to the synthetic scale-up data for all D/D_T data together. These two separate types of fits are presented in the Excel spreadsheet, which contains two separate spreadsheets entitled "Separately fitted" and "Simultaneously fitted." For simplicity, S_i^* was replaced by Si in the Excel spreadsheet. Columns A and B yield, respectively, the ball size $d_{\rm B}$ values and the particle size x_i values from which the artificial S_i values were calculated using the Austin model for different values of $D/D_{\rm T}$. A summary table is included at the far right side of the Excel spreadsheet, which presents the values used in Table 2 of the manuscript.

Nomenclature

Si,A and Si,K: S_i^* calculated by the Austin model and estimated by the KK model Si,Kmod: S_i^* estimated by the KK model with modified (fitted) N_1 and N_2 Sqrt(Si,A) and Sqrt(Si,K): Square root of Si,A and Si,K Sqrt(Si,Kmod): Square root of Si,Kmod SE original: square error between the Austin and the KK model for $N_1 = 0.5$ and $N_2 = 0.2$

SE modified: square error between the Austin and the KK model for fitted N_1 and N_2

*Contact

Dr. Ecevit Bilgili <u>bilgece@njit.edu</u>