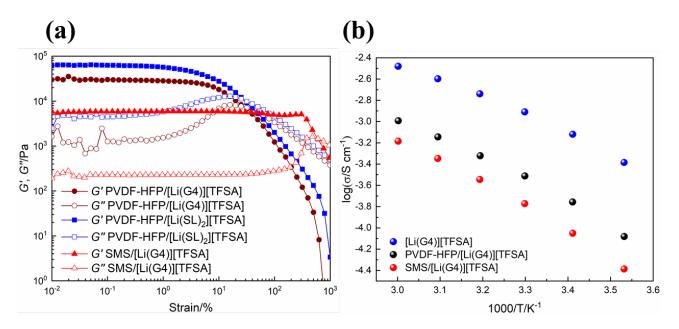
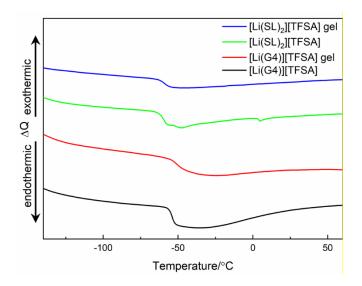
Supporting Information

Electrochemical Properties of Poly(vinylidene fluoride-*co***-hexafluoropropylene) Gel Electrolytes with High-Concentration LiSalt/Sulfolane for Lithium Batteries**


Ji-young OCK,^a Miki FUJISHIRO,^a Kazuhide UENO,^{a,b} Masayoshi WATANABE,^b and Kaoru DOKKO^{a,b,c,*}

^a Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan


^b Advanced Chemical Energy Research Center (ACERC), Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

^c Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

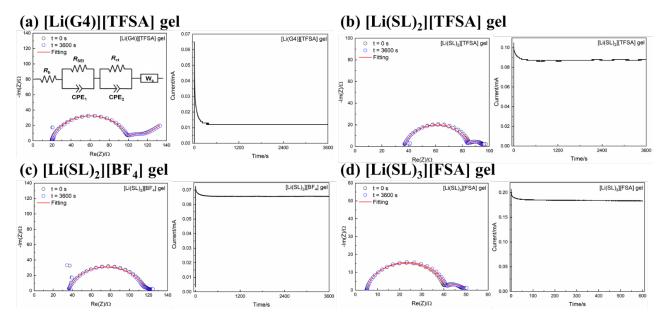
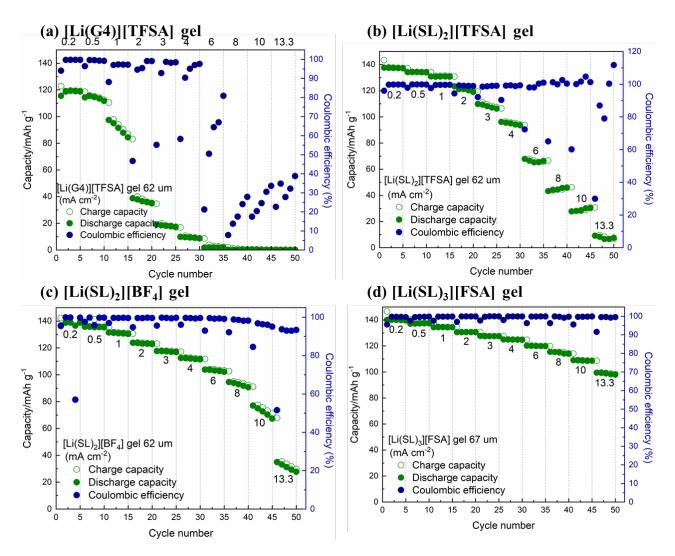
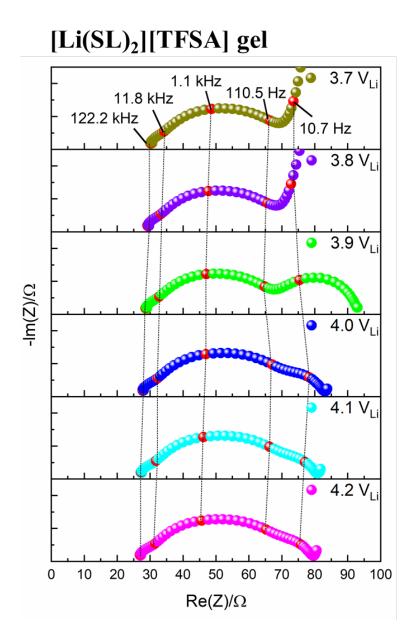
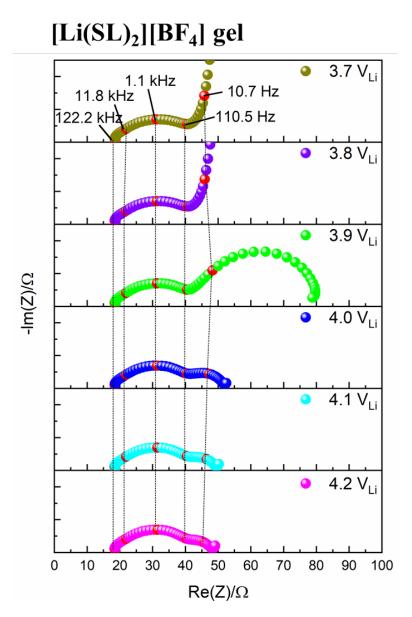

*Corresponding Author: <u>dokko-kaoru-js@ynu.ac.jp</u>

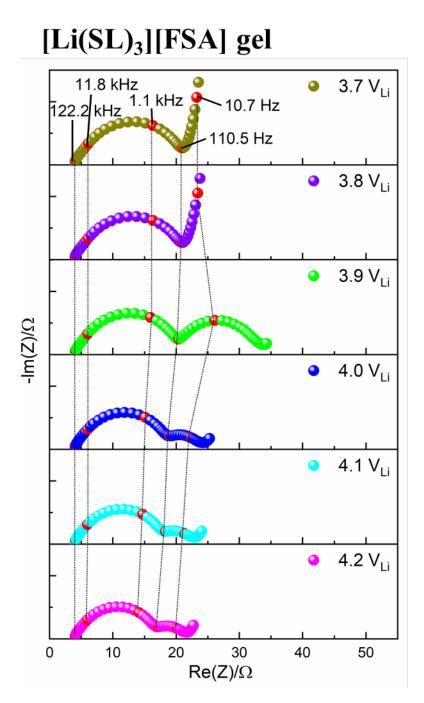
Figure S1. (a) Elastic modulus as a function of dynamic stress amplitude of gel based on 70 wt% highly concentrated electrolytes in polymer matrix at 30 °C. (b) Ionic conductivity of [Li(G4)][TFSA] gel electrolytes with the different polymer matrix at the weight ratio of [Li(G4)][TFSA] : polymer = 70 : 30. The number-average molecular weight, M_n , of SMS is 39.7 kDa. The weight fraction of the PSt block, f_{PSt} , is 46.6 wt%. Regarding the SMS, the details are described in a previous paper (Y. Kitazawa et al., *Macromolecules*, **47**, 6009 (2014)).


Figure S2. DSC thermograms of highly concentrated electrolytes (without PVDF–HFP) and gel electrolytes at a heating rate of 10 $^{\circ}$ C min⁻¹ under nitrogen atmosphere.


Figure S3. Nyquist plots before/after polarization and cheronoamperogramms of the [Li/Gel/Li] cells. The equivalent circuit shown in the inset was used to fit the data. The contact area of Li/gel electrolyte is 2 cm² and the thickness of each gel electrolyte is shown in **Table S1**.

	Thickness [µm]	I _Ω [mA]	I _{ss} [mA]	${R'}_{bulk} \ [\Omega]$	<i>R</i> ′ ₀ [Ω]	R'_{ss} [Ω]	t ₊ [-]
[Li(G4)][TFSA]	76	0.080	0.012	19.4	88.1	88.4	0.03
[Li(SL) ₂][TFSA]	71	0.106	0.088	36.6	56.1	56.0	0.65
[Li(SL) ₂][BF ₄]	73	0.072	0.066	35.9	82.9	81.4	0.73
[Li(SL) ₃][FSA]	69	0.203	0.183	5.17	41.9	42.5	0.53


Table S1. Thickness of gel electrolytes, I_{Ω} , I_{ss} , R'_{bulk} , R'_0 , R'_{ss} and t_+ evaluated at 30 °C.


Figure S4. Rate performances of Li/LiCoO₂ cells with (a) [Li(G4)][TFSA], (b) [Li(SL)₂][TFSA], (c) [Li(SL)₂][BF₄] and (d) [Li(SL)₃][FSA] gel electrolytes at 30 °C.

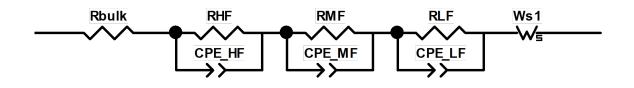

Figure S5. Nyquist plots of a $[Li/[Li(SL)_2][TFSA]$ gel/LiCoO₂] cell measured at 30 °C. The electrode areas of Li metal and LiCoO₂ electrodes are 2 cm² and 1.5 cm², respectively.

Figure S6. Nyquist plots of a $[Li/[Li(SL)_2][BF_4]$ gel/LiCoO₂] cell measured at 30 °C. The electrode areas of Li metal and LiCoO₂ electrodes are 2 cm² and 1.5 cm², respectively.

Figure S7. Nyquist plots of a [Li/[Li(SL)₃][FSA] gel/LiCoO₂] cell measured at 30 °C. The electrode areas of Li metal and LiCoO₂ electrodes are 2 cm² and 1.5 cm², respectively.

Figure S8. Equivalent circuit model for the [Li/Gel/LiCoO₂] cell. Constant phase elements (CPEs) are used instead of capacitances to fit the Nyquist plots. Warburg impedance (Ws1) represents the Li^+ ion diffusion impedance in the electrolyte and LiCoO₂ in the frequency range <1 Hz.