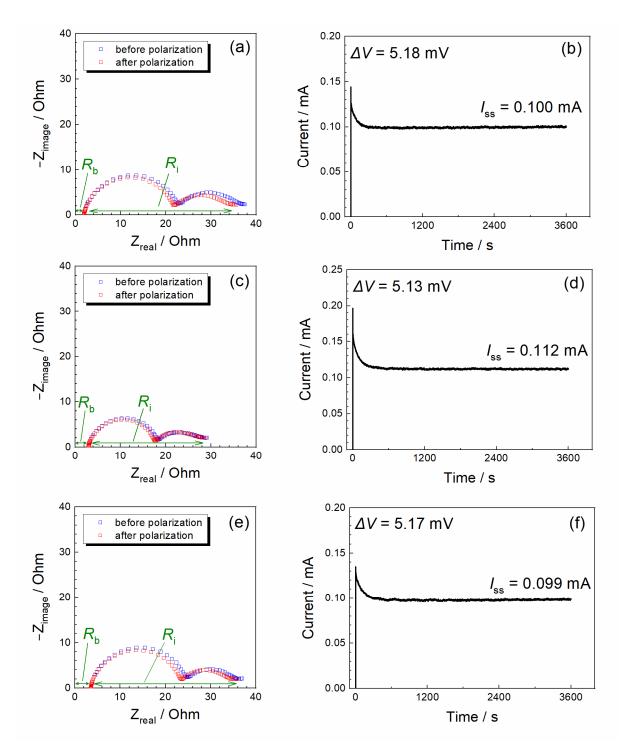
Supporting Information

Effects of Lithium Salt Concentration in Ionic Liquid Electrolytes on Battery Performance of LiNi_{0.5}Mn_{0.3}Co_{0.2}O₂/Graphite Cells

Takuya TAKAHASHI,^{a,b} Masashi ISHIKAWA,^{a,c,*} Yosuke UGATA,^b Kaoru DOKKO,^{b,d} and Masayoshi WATANABE ^d


^a *iElectrolyte Co., Ltd., Center for Innovation & Creativity of Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan*

^b Department of Chemistry and Life Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

^c Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

^d Advanced Chemical Energy Research Center (ACERC), Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

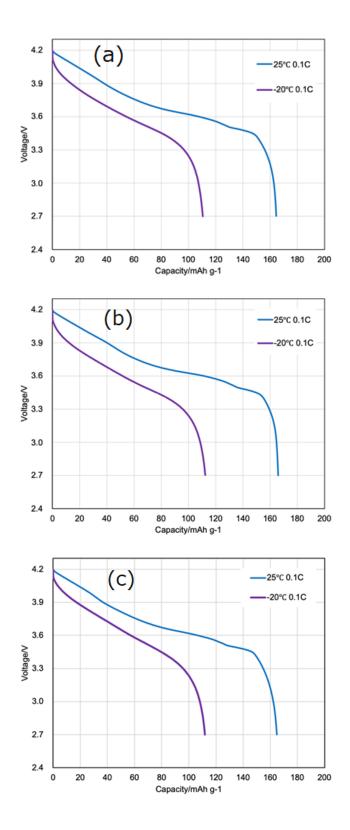

*Corresponding author: masaishi@kansai-u.ac.jp

Figure S1. Nyquist plots before and after polarization and chronoamperograms for [Li |electrolyte with glass separator | Li] cells acquired at 25 °C. Electrolytes were (a,b) 1.2 mol kg⁻¹, (c,d) 2.0 mol kg⁻¹, (e,f) 2.4 mol kg⁻¹ LiFSI/EMImFSI. Each Li metal electrode had an area of 2 cm².

Figure S2. The initial two charge-discharge curves of NMC532/graphite pouch cells with (a) 1.2 mol kg⁻¹, (b) 2.0 mol kg⁻¹, and (c) 2.4 mol kg⁻¹ LiFSI/EMImFSI measured at 0.1 C-rate at 25 °C.

Figure S3. Discharge curves of NMC532/graphite pouch cells with (a) 1.2 mol kg⁻¹, (b) 2.0 mol kg⁻¹, and (c) 2.4 mol kg⁻¹ LiFSI/EMImFSI at -20 °C at 0.1 C-rate.