J-STAGE Data
Browse
1/1
2 files

Electrochemical Impedance Spectroscopy Part 2: Applications (Presentation File and EIS Calculation Sheet)

Version 2 2022-11-07, 04:36
Version 1 2022-10-31, 00:03
presentation
posted on 2022-11-07, 04:36 authored by Kingo Ariyoshi, Atsushi MINESHIGE, Mitsuhiro TAKENO, Tomokazu FUKUTSUKA, Takeshi ABE, Satoshi UCHIDA, Zyun SIROMA

 This supplementary material is a part of the presentation handout, pages 155–180, for the 51st Electrochemistry Workshop entitled “Fundamentals and New Approaches to Electrochemistry” organized by Kansai Branch of the Electrochemical Society of Japan on November 14–18, 2022 to be distributed at the workshop. / Electrochemical impedance spectroscopy (EIS) is widely used for the analysis of various electrochemical devices, as it can quantitatively evaluate the main kinetic parameters related to electrochemical phenomena by analysis using equivalent circuits. This paper describes practical applications of EIS, along with EIS measurement and analysis methods for solid electrolytes, Li-ion batteries (LIBs), and electric double-layer capacitors (EDLCs). In all applications, it is necessary to properly measure the impedance data for an adequate equivalent circuit analysis. Therefore, after presenting the backgrounds of EIS applications in the Section 1 (Introduction), the experimental cautions in the measurements are discussed in detail in Sections 2–4. Section 2 (“EIS for Solid Electrolytes”) presents practical examples of measurements for accurate data, as the EIS analysis of solid electrolytes requires impedance data in the high-frequency range above 1 MHz. Section 3 (“EIS for Lithium-Ion Batteries”) describes a method of separating the internal resistance into the resistances of the positive and negative electrodes and electrolyte resistance, as the output power capabilities of LIBs are frequently evaluated based on an internal resistance. In particular, a symmetrical cell technique enabling measurements of the impedance data only for the positive or negative electrode is demonstrated. As described in Section 4 (“EIS for Electric Double-Layer Capacitors”), the excessive and unwanted impedances arising from instruments and cells must be suppressed as much as possible for appropriately measuring the correct EIS of EDLCs, because the resistance of EDLCs is very small. Therefore, the experimental setup that should be considered in EIS measurements for EDLCs leading to disturbed impedance data is discussed, along with the effects of this scenario on the impedance data. Finally, we summarize our conclusions in Section 5 (Summary). 

Funding

Development of basic technology to promote the practical application of innovative storage batteries

New Energy and Industrial Technology Development Organization

Find out more...

Development of innovative storage batteries for electric vehicles

New Energy and Industrial Technology Development Organization

Find out more...

History

Corresponding author email address

ariyoshi@omu.ac.jp

Translated title

4.電気化学インピーダンス測定の基礎と実際~多孔体電極・イオン伝導体・実用測定(LIB・EDLC)~(その2)

Translated description

第51回電気化学講習会「電気化学の基礎と新しいアプローチ」 (主催:電気化学会関西支部・2022年11月14–18日) 配付資料, pp.155–180 および EIS計算シート / 電気化学インピーダンス分光法 (Electrochemical impedance spectroscopy; EIS) は,等価回路を用いた解析により電気化学現象に関わる主要な動力学パラメーターを定量的に評価できるため,各種電気化学デバイスの解析に広く利用されている.本稿では,固体電解質,リチウムイオン電池 (Li-ion batteries; LIB),電気二重層キャパシタ (electric double-layer capacitors; EDLC) のEIS測定・解析方法とともに,EISの実用的な応用について述べる.いずれの用途においても,適切な等価回路解析を行うためには,インピーダンスデータを適切に測定することが必要である.そこで,第1章 (はじめに) でEISの応用の背景を紹介した後,第2~4章で測定上の注意点を詳しく説明する.第2章 (固体電解質のEIS) では固体電解質のEIS解析において1MHz以上の高周波領域でのインピーダンスデータが必要となることから,正確なデータを得るための測定例を実践的に紹介する.第3章 (リチウムイオン電池のEIS) では,LIBの出力性能を内部抵抗で評価することが多いため,内部抵抗を正極,負極の抵抗と電解質抵抗に分離する方法について解説している.特に,正極または負極のインピーダンスデータのみを測定できる対称型セル技術について示す.第4章 (電気二重層キャパシタのEIS) で述べるように,電気二重層キャパシタの抵抗は非常に小さく,正しいEISを適切に測定するためには機器やセルから生じる過剰で不要なインピーダンスをできるだけ抑制する必要がある.そこで,インピーダンスデータの乱れにつながるEDLCのEIS測定で考慮すべき実験設定について,このシナリオがインピーダンスデータに与える影響とともに考察する.最後に,第5節 (まとめ) で結論をまとめる.

Translated authors

有吉欽吾・嶺重 温・武野光弘・福塚友和・安部武志・内田悟史・城間 純

Copyright

© 2022 The Author(s).

Usage metrics

    Electrochemistry

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC