J-STAGE Data
Browse
1/1
8 files

Changes in the structure and function of myofibrils during pressurization using a high-pressure microscope

media
posted on 2021-09-24, 01:01 authored by Seine A. Shintani

When pressure is applied to a solution, the pressure is instantly and uniformly transmitted throughout the solution because the solution is incompressible. When this hydrostatic pressure is 40 to 80 MPa, the protein is not destroyed and the interaction between the hydrophilic / hydrophobic residues on the protein surface and the water molecule changes. As a result, the bonds between proteins can be weakened to promote structural changes such as depolymerization.

How myofibrils change structure and motor function under high hydrostatic pressure was measured in real time with a high-pressure microscope.

Video 1.

Structural changes in myofibrils when a pressure of 60 MPa was applied in relaxing solution.

The imaging speed at the time of measurement was 30 fps. The scale bar is 10 µm.

Video 2.

Structural changes in myofibrils when a pressure of 60 MPa was applied in rigor solution.

The imaging speed at the time of measurement was 1 fps. The scale bar is 10 µm.

Video 3.

Sarcomeric oscillation of myofibrils under 0.1 MPa pressure.

The imaging speed at the time of measurement was 30 fps. The scale bar is 10 µm.

Video 4.

Sarcomeric oscillation of myofibrils under 40 MPa pressure.

The imaging speed at the time of measurement was 30 fps. The scale bar is 10 µm.

Video 5.

Sarcomeric oscillation of myofibrils under 50 MPa pressure.

The imaging speed at the time of measurement was 30 fps. The scale bar is 10 µm.

Video 6.

Sarcomeric oscillation of myofibrils under a pressure of 0.1 MPa after pressure treatment.

The imaging speed at the time of measurement was 30 fps. The scale bar is 10 µm.

Video 7.

Structural changes in myofibrils when a pressure of 80 MPa was applied in rigor solution.

The imaging speed at the time of measurement was 1 fps.


Funding

A spoken dialogue system based on estimation of mental state using multimodal processing

Japan Society for the Promotion of Science

Find out more...

Development of real-time coding imaging method for minimally invasive in vivo nano measurement of the heart

Japan Society for the Promotion of Science

Find out more...

Development of tracking integrated Raman spectroscopy to measure myosin state distribution in a sarcomere under physiological environment

Japan Society for the Promotion of Science

Find out more...

the 37th Casio Science Promotion Foundation Grant (S.A.S., Number 39)

the Chubu University fund for special research expenses (S.A.S., 31M03CP)

History

Manuscript title

Effects of high-pressure treatment on the structure and function of myofibrils

Corresponding author email address

shintani@isc.chubu.ac.jp

Translated title

高圧力顕微鏡を利用した、加圧中の筋原線維の構造と機能の変化

Translated description

溶液に圧力を加えると、溶液が非圧縮性であるため、瞬時に溶液全体に均一に圧力が伝わる。この静水圧が40~80 MPaの場合、たんぱく質は破壊されず、たんぱく質表面の親水・疎水性残基と水分子の相互作用が変化する。その結果として、たんぱく質同士の結合を弱めて、脱重合などの構造変化を促せる。 筋原線維が高静水圧下でどのように構造と運動機能を変えていくのかを高圧力顕微鏡でリアルタイムに計測した。 Video 1. 弛緩溶液に60MPaの圧力を加えたときの筋原線維の構造変化。 測定時のイメージング速度は30fps。スケールバーは10µm。 Video 2. 60MPaの圧力がRigor溶液に加えられたときの筋原線維の構造変化。 測定時のイメージング速度は1fps。スケールバーは10µm。 Video 3. 0.1MPaの圧力下での筋原線維の筋節振動。 測定時のイメージング速度は30fps。スケールバーは10µm。 Video 4. 40MPaの圧力下での筋原線維の筋節振動。 測定時のイメージング速度は30fps。スケールバーは10µm。 Video 5. 50MPaの圧力下での筋原線維の筋節振動。 測定時のイメージング速度は30fps。スケールバーは10µm。 Video 6. 圧力処理後の0.1MPaの圧力下での筋原線維の筋節振動。 測定時のイメージング速度は30fps。スケールバーは10µm。 Video 7. Rigor溶液中で80MPaの圧力を加えたときの筋原線維の構造変化。 測定時のイメージング速度は1fps。

Translated manuscript title

筋原線維の構造と機能に対する高圧処理の効果

Translated authors

新谷正嶺