1/1
4 files

Evaluation of Features in Time Frequency Domain and Improvement of Sensitivity and Efficiency of Hammering Method using Neural Networks

dataset
posted on 16.04.2022, 01:27 by Eiichi SASAKI, Kouichi TAKEYA, Fan Shushu, Yuichi ITO

While research on quantification and automation of hammering inspection is progressing, there are prob- lems in inspection time and cost to replace or assist inspectors. This study aimed for the improvement in sensitivity and efficiency of the hammering method by estimating the influence range of detection results. In the experiment, a concrete wall specimen with void defects was used. The features with higher influence were selected from the time-frequency analysis and multiple feature selection algorithms. As a result of defect detection and its influence range using neural networks, it is possible to detect void defects up to a depth of 8 cm. The inspection results can be efficiently visualized by estimating the influence range.

History

Manuscript title

Evaluation of Features in Time Frequency Domain and Improvement of Sensitivity and Efficiency of Hammering Method using Neural Networks

Article DOI

10.11532/jsceiii.2.J2_721

Corresponding author email address

takeya.k.aa@m.titech.ac.jp

Translated title

時間・周波数領域の特徴量評価とニューラルネ ットワークを用いた打音法の感度向上と効率化

Translated description

打音検査の定量化や自動化に向けた研究が進む一方で,検査員による従来型の検査を代替または補助す るには欠陥の深さ方向に対する感度や検査時間,導入コストに課題があるといえる.本研究では比較的深 い欠陥に対する検出感度の向上に加えて,その検出結果が影響する範囲を推定することで打音検査の効率 化を目指す.はじめに,マイクロフォンの音圧波形の時間・周波数解析と複数の特徴選択手法から影響度 の高い特徴量を選定した.そのうえで,畳込層と全結合層からなるニューラルネットワークを用いて欠陥 検出とその影響範囲の推定を行った.空隙を埋設したコンクリート試験体による検証の結果,深さ 8 cm ま での空隙欠陥が検知可能であり,影響範囲の推定によって結果を効率的にマッピングできることを示した.

Translated manuscript title

時間・周波数領域の特徴量評価とニューラルネ ットワークを用いた打音法の感度向上と効率化

Translated authors

竹谷 晃一, 佐々木 栄一, 范 書舒, 伊藤 裕一

Copyright

© 2022 Japan Society of Civil Engineers