J-STAGE Data
Browse

Electrochemical Performance of Nanorod-like (La, Zr) Co-Doped Li-rich Li1.2Ni0.2Mn0.6O2 Cathodes for Use in Lithium-Ion Batteries (Supporting Information)

Download (553.66 kB)
Version 2 2022-01-13, 07:01
Version 1 2021-12-17, 07:03
dataset
posted on 2022-01-13, 07:01 authored by Wencong WANG, Hiromasa HANZAWA, Ken-ichi MACHIDA, Kohei MIYAZAKI, Takeshi ABE
A lithium-rich layered structure in lithium-ion batteries (LIBs) has attracted much affection due to its high capacity of over 250 mAh g−1 after activation. This could satisfy the requirements of next-generation energy-storage devices. However, a spinel-like impurity phase that forms from the pristine layered structure during cycling is considered to be harmful to the structure stability and Li+ mobility, resulting in undesired electrochemical performance. In this study, nanorod-like Li1.2Ni0.2Mn0.6O2 with a three-dimensional architecture was synthesized by evaporative-crystallization with as-prepared nano-MnO2 as a hard template. The structure stability and Li+ mobility of the nanorod-like Li1.2Ni0.2Mn0.6O2 was improved by the addition of an appropriate molar ratios of (La, Zr) co-dopants. This combination exhibited outstanding capacity retention of 80.9 % with a stable discharge capacity of 102 mAh g−1 after 300 cycles under a high current density of 1000 mA g−1 (corresponding to 5 C). This study suggests that the use of a multi-prong strategy that combines morphology control and co-doping should be an effective method for improving the high-rate performance of Li-rich materials.

History

Manuscript title

Electrochemical Performance of Nanorod-like (La, Zr) Co-Doped Li-rich Li1.2Ni0.2Mn0.6O2 Cathodes for Use in Lithium-Ion Batteries

Corresponding author email address

myzkohei@elech.kuic.kyoto-u.ac.jp

Copyright

© 2021 The Author(s)

Usage metrics

    Electrochemistry

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC